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Abstract

Analytical solutions obtained through perturbation method and Fourier transform are presented for natural convection in concentric
cylinders with a porous sleeve. The porous sleeve is press-fitted to the inner surface of the outer cylinder. Both the inner and outer cyl-
inders are kept at constant temperatures with the inner surface at a slightly higher temperature than that of the outer. The main objective
of the present study is to investigate the buoyancy-induced flow as affected by the presence of the porous layer. A parametric study has
been performed to investigate the effects of Rayleigh number, Darcy number, porous sleeve thickness, and relative thermal conductivity
on the heat transfer results.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in horizontal annuli has long been a
subject of engineering interest. Earlier work includes sev-
eral experimental studies with flow visualization by Bishop
and Carley [1] and Powe et al. [2,3]. Kuehn and Goldstein
[4,5] examined this problem from both experimental and
numerical perspectives. Charrier-Mojtabi et al. [6], on the
other hand, performed a numerical study on the same sub-
ject. Since then, this problem has been extended to include
the effect of eccentricity [7–11] and to the field of porous
media [12–14]. Caltagirone [12] studied natural convection
in a saturated porous medium bounded by two horizontal
concentric cylinders. Later, Bau [13] examined natural con-
vection in an eccentric porous annulus at low Rayleigh
numbers using the perturbation method.

The present work examines the flow and temperature
fields in a concentric annulus with a porous sleeve. Differ-
ent from the previous studies mentioned above, the present
study considers a fluid layer and a porous layer of finite
thickness. In fact, the study of flow interaction between a
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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fluid and a porous layer can be dated back to the sixties.
Ishizawa and Hori [14] had obtained the normal velocity
profiles of a viscous fluid through a porous wall into a nar-
row gap. For applications, a horizontal annulus with a por-
ous sleeve is of practical interest. For example, heat
transfer in an annulus with scale or ice slurry developed
on the inner surface of the outer cylinder is important for
heat exchanger design. Another related application is the
use of porous bearings in rotary machinery.

2. Formulation and numerical method

The physical configuration of the present study (Fig. 1)
consists of two infinitely long cylinders of radii a and c.
They are maintained at constant temperatures, TH (on the
inner cylinder) and TL (on the outer cylinder) with TH > TL.
In between, a porous sleeve of inner radius b is press-fitted
to the inner surface of the outer cylinder. Thus, the config-
uration consists of an inner fluid region and an outer porous
region. It is assumed that the porous matrix is homoge-
neous, isotropic and saturated with the same fluid in the
fluid region. The effects of temperature on the fluid and por-
ous matrix properties other than density are assumed negli-
gible due to the small temperature difference. Since both
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Nomenclature

a radius of the inner cylinder (m)
b inner radius of the porous sleeve (m)
c radius of the outer cylinder (m)
cp heat capacity (J/kg K)
Da Darcy number, Da = K/b2

g gravitational acceleration (m/s2)
K permeability (m2)
k effective thermal conductivity of porous medium

(W/m K)
Nu Nusselt number, Nu = hb/k
Nu average Nusselt number
P pressure (Pa)
Pr Prandtl number, Pr = m/a1

R normalized radial distance in cylindrical coordi-
nate system, R = r/b

r radial distance in cylindrical coordinate system
(m)

Ra Rayleigh number, Ra = gb(TH � TL)b3/ma1

T temperature (K)
ur, uh velocity components in cylindrical coordinate

system (m/s)

Greek symbols

a thermal diffusivity, k/qcp (m2/s)
b coefficient of thermal expansion (1/K)
l dynamic viscosity of fluid (kg/m s)
~l effective viscosity in Brinkman model (kg/m s)
m kinematic viscosity of fluid (m2/s)
q fluid density (kg/m3)
H normalized temperature, H = (T � TL)/

(TH � TL)
h azimuthal angle in cylindrical coordinate system
W dimensionless stream function, W = w/a1

w stream function (m2/s)

Subscripts

in inner cylinder
out outer cylinder
1 fluid layer
2 porous layer

b

c

a

TH

TL

r

θ

Fig. 1. A concentric annulus with a porous sleeve subject to differential
heating from the inner and outer wall (TH > TL).
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cylinders are stationary, the fluid motion is induced by the
thermal buoyancy resulting from the differential heating
between the cylinders. It is further assumed that the buoy-
ancy-induced flow is steady and laminar.

The governing equations in terms of stream function
and temperature for both fluid and porous layers are given
by
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where subscripts 1 and 2 refer to the fluid region and por-
ous layer, respectively. $ is the regular Laplacian operator
and is given by

r2 ¼ o2

or2
þ 1

r
o

or
þ 1

r2

o2

oh2
. ð5Þ

For the fluid region, Eqs. (1) and (2) are exactly the
same as those derived by Yao [7]. For the porous layer,
Eqs. (3) and (4) are formulated using the Brinkman
extended Darcy law. The governing equations are normal-
ized to give
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The corresponding boundary and interface conditions
are given below.

On the surface of the inner cylinder,

r ¼ a; ur1 ¼ 0; uh1 ¼ 0; T 1 ¼ T H. ð11aÞ
On the surface of the outer cylinder,

r ¼ c; ur2 ¼ 0; uh2 ¼ 0; T 2 ¼ T L. ð11bÞ
On the interface between the fluid layer and the porous
sleeve,

r ¼ b; ur1 ¼ ur2; uh1 ¼ uh2; ð11cÞ
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In the dimensionless form, they are given by
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3. Solution method

Since the temperature difference between the cylinders is
small, the corresponding Rayleigh number is also small.
For the present study, the solutions are obtained using
the perturbation method. Although a direct numerical
solution of the problem is possible, analytical solution is
preferred here. Particularly, the closed form solutions
obtained from the present study are intended for code val-
idation for a related study [15]. In the spirit of perturbation
method, the solutions for the stream function and temper-
ature are sought in the form of power series of the Rayleigh
number
W1 ¼ W10 þ RaW11 þ Ra2W12 þ � � � ; ð13aÞ
H1 ¼ H10 þ RaH11 þ � � � ; ð13bÞ

W2 ¼ W20 þ RaW21 þ Ra2W22 þ � � � ; ð14aÞ
H2 ¼ H20 þ RaH21 þ � � � . ð14bÞ

Analytical solutions up to the second leading terms are
obtained and presented in this paper. Substitute the above
solution forms to their governing equations as well as the
boundary and interface conditions, respectively. After col-
lecting the terms with the same power of the Rayleigh num-
ber, one obtains four sets of governing equations and their
corresponding boundary and interface conditions at differ-
ent solution levels (orders). For brevity, the formulations
of these subset problems are not presented here but can
be found in Ref. [16].

To solve the problems at various levels, Finite Fourier
Transform is used in which the independent variable h is
transformed to a parameter r. Osizik [17] has successfully
demonstrated the use of this transform in classical heat
conduction problems. In the present work, there is no pre-
scribed boundary condition for the independent variable h
except the requirement that the flow and temperature fields
have to be continuous around the annulus with a period of
2p. This transformation is performed as follows:
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Solving the problems in a sequential manner at the cor-
responding powers of the Rayleigh number, one obtains
the following solutions:
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Notice that the functions I and K in the above equations
are the modified Bessel functions of the first and second
kinds, respectively. The prime denotes the partial derivative
with respect to R. The coefficients in each equation are
listed in Appendix A. Clearly, H10 and H20 represent the
solutions of conduction for the limiting case of Ra = 0.
As such, there is no flow inside the annulus (Eqs. (16a)
and (16b)).

The heat transfer results are evaluated in terms of the
Nusselt number on both inner and outer cylinders. By def-
inition, the local Nusselt numbers represent the local heat
flux and are given by
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To evaluate the average Nusselt number, one integrates
the local Nusselt number over the circumference of the
cylinder
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Since the temperature field is symmetrical about the ver-
tical axis (and thus it is an even function), the limit of inte-
gration in Eqs. (22) is from 0 to p.

4. Results and discussion

The present study is focused on the effects of Rayleigh
number, porous sleeve thickness, Darcy number, and the
effective thermal conductivity ratio on the flow and temper-
ature fields in a concentric annulus with a porous sleeve.
Among the parameters considered, Rayleigh number signi-
fies the thermal buoyancy induced by the differential heat-
ing between the inner and outer cylinders. Mathematically,
a solution obtained by the perturbation method is valid
only for a small perturbed quantity (Rayleigh number in
the present study). However, in the literature, Mack and
Bishop [18] have reported solutions for which the Rayleigh
number is as high as 103. In a similar study, Huetz and Petit
[19] as well as Custer and Shaughnessy [20] all have
obtained converged solutions with the Grashof number
(their perturbed quantity) in an order up to 104. The reason
why the solution still converges at these values may be due
to the fact that convection remains very weak in the range
of these numbers. For the present study, it has been found
that the flow and temperature fields as well as the heat
transfer results predicted by the present analytical solutions
agree very well with those of the direct numerical solutions
for Rayleigh numbers up to 100. Typically, a Rayleigh
number on the order of 100 corresponds to a temperature
difference of 0.1 K for an annulus with a gap width of 1 cm.
Therefore, the buoyancy-induced flow is small but finite.
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For the discussion that follows, we limit our attention to a
specific configuration of a = 1, b = 1.5, and c = 2, unless
specified otherwise. Also, the flow and temperature fields
are presented in the contour plots of stream function and
isotherm, respectively.

Fig. 2 shows the effect of porous sleeve thickness on the
flow and temperature fields at the Rayleigh number of
unity. An increase in the value of b implies a reduction in
the porous sleeve thickness. This can be clearly observed
by the locations of the interface (dashed line) between the
inner and outer cylinders. Apparently, the flow fields are
symmetrical about the vertical diameter. On each side of
the vertical diameter, there exists a convective cell. The
left cell rotates in the counter-clockwise direction while
the right cell of equal strength rotates in the clockwise
direction. As the thickness of the porous sleeve reduces
(i.e., b increases), the flow resistance in the entire annulus
decreases accordingly. As a result, less energy is lost
through the flow resistance and which leads to a stronger
convective flow. In general, the eyes of the convective cells
are located within the fluid layer. At b = 1.75, the porous
sleeve is nearly impermeable and convection is mainly con-
fined in the fluid layer. As b decreases, the convective cells
penetrate the porous sleeve. At b = 1.25, the fluid layer is
too thin to contain the convective cells. As such, the cells
penetrate the porous sleeve and their strength decreases
accordingly.

Also observed is that the isotherms appear to be a family
of concentric circles and thus the temperature profiles are
independent of the azimuthal angle. Regardless of the loca-
tion of the interface, the spacing between isotherms
remains little changed. This indicates that the sleeve thick-
Fig. 2. Effect of porous sleeve thickness on natural convection in concentri
Pr = 2 · 104: (a) flow fields (DW = 2 · 10�5 for b = 1.25 and 1.5, DW = 1 · 10
ness has nearly no effect on the temperature distribution.
Because heat conduction is the dominant heat transfer
mode in these cases, the isotherms are distributed in pro-
portion to the logarithm of the radial distance. The result
is consistent with the assumption made at the beginning
of the study (that is, a small Rayleigh number). A small
Rayleigh number implies that heat convection is insignifi-
cant, or in other words, heat conduction is the dominant
heat transfer mode in the system. This observation is also
consistent with the results of Kuehn and Goldstein [4].
They have shown that the critical Rayleigh number RaL

for the onset of heat convection in concentric cylinders is
about 103, where RaL is defined based on the gap width,
L. Since the presence of a porous sleeve imposes additional
resistance on the convective flow, it is reasonable to expect
that the critical Rayleigh number for a concentric annulus
with a porous sleeve would be higher than 103.

Presented in Fig. 3 are the flow and temperature fields at
various Darcy numbers. A Darcy number with a unity
value implies that the pore size in the porous sleeve is of
the same order of magnitude as the gap width. This in turn
signifies that the flow resistance in the porous sleeve is
basically non-existent. As such, the flow structures for
Da = 10�1 resemble those with a porous sleeve that is
highly permeable. As the Darcy number decreases, the flow
resistance becomes more significant. It is more difficult for
the convective flow to penetrate the porous sleeve, which
leads to weaker convective cells. In addition, it is clearly
observed that the eye of the convective cells moves inward
as the Darcy number decreases. Since the flow penetration
decreases with a reduction in the Darcy number, the cells
are mostly confined in the fluid layer and thus the eyes
c cylinders with a porous sleeve for Ra = 1, Da = 10�4, k1/k2 = 1, and
�4 for b = 1.75); (b) temperature fields (DH = 0.2).



Fig. 3. Effect of Darcy number on natural convection in concentric cylinders with a porous sleeve for Ra = 1, b = 1.5, k1/k2 = 1, and Pr = 2 · 104: (a) flow
fields (DW = 2 · 10�4 for Da = 10�1 and 10�2, DW = 2 · 10�5 for Da = 10�4); (b) temperature fields (DH = 0.2).
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are pushed inward. Since the conductivity ratio is fixed at
unity, the isotherm patterns are identical. This also shows
that the temperature gradients are too small to induce sig-
nificant heat convection.

The effects of thermal conductivity ratio k1/k2 are exam-
ined in Fig. 4. At a small Rayleigh number, the convective
cells are confined within the fluid layer. Also noticed is that
Fig. 4. Effect of thermal conductivity ratio on natural convection in concen
Pr = 2 · 104: (a) flow fields (DW = 2 · 10�5); (b) temperature fields (DH = 0.2
the convective cells become weaker with an increase in the
thermal conductivity ratio. For k1/k2 > 1, the porous sleeve
has a smaller thermal conductivity and thus leads to a lar-
ger temperature gradient in the porous sleeve to initiate
convection and flow penetration. The figure also shows
that the temperature fields depend mostly on the thermal
conductivity ratio but not the Rayleigh number. Because
tric cylinders with a porous sleeve for Ra = 1, Da = 10�4, b = 1.5, and
).
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heat conduction is the dominant heat transfer mode for
these cases, the Rayleigh number only plays a minor role.
When k1/k2 = 1, the isotherms are relatively evenly distrib-
uted within the gap because there is no distinction between
the fluid and porous sleeve as far as heat conduction is con-
cerned. For k1/k2 < 1, the porous sleeve is more conductive
than the fluid layer. As a result, a large temperature gradi-
ent is found in the fluid layer while temperature is almost
uniform in the porous sleeve. Conversely, for k1/k2 > 1,
the temperature in the fluid layer is more uniform than that
in the porous sleeve.

The combined effects of Darcy number and conductivity
ratio can be examined from Figs. 5 and 6. As observed, the
flow fields (Fig. 5) show a similar trend as that observed in
Fig. 3. As the Darcy number decreases, the convective cell
weakens in strength along with its eye moving toward the
fluid layer. Notice that the increment of the stream func-
tion DW for the case of Da = 10�4 is only half of the other
Fig. 5. Flow fields in a concentric annulus with a porous sleeve for b =
DW = 5.0 · 10�6 otherwise).
cases. Therefore, its strength is actually much weaker than
it appears in the figure. When the porous sleeve is less per-
meable (Da = 10�4), a smaller thermal conductivity ratio
(k1/k2 < 1) leads to a larger temperature gradient in the
fluid layer. A larger temperature gradient represents a
stronger driving force to produce a more vigorous convec-
tive flow. As such, the strength of the convective flow
decreases with an increase in the conductivity ratio. When
the porous sleeve is considerably permeable (Da = 100 and
10�2), the strength of the convective cells on the other
hand grows with the thermal conductivity ratio k1/k2.
Remember that, at this range of Darcy numbers, the
flow in the annulus behaves as if it were in a single fluid
layer. At k1/k2 = 0.5, a higher temperature gradient
appears in the fluid layer, leaving the porous sleeve almost
isothermal. As k1/k2 increases, the temperature gradient in
the porous sleeve increases, leading to a stronger convec-
tive cell.
1.50, Pr = 2 · 104, and Ra = 0.1 (DW = 2.5 · 10�6 for Da = 10�4, and



Fig. 6. Temperature fields in a concentric annulus with a porous sleeve for b = 1.50, Pr = 2 · 104, and Ra = 0.1 (DH = 0.2).
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For a given conductivity ratio, it appears that the tem-
perature field is independent of the Darcy number
(Fig. 6). When k1/k2 = 1.0, there is no distinction between
the fluid and porous layers as far as heat transfer is con-
cerned. For k1/k2 < 1, the porous sleeve is more conductive
than the fluid layer. For this reason, the porous sleeve is
almost uniform in temperature. On the other hand, for
k1/k2 > 1, the temperature in the fluid layer is more uni-
form than that in the porous sleeve. Unlike the flow fields,
the temperature fields for Da = 100 depend heavily on
k1/k2. Although there is almost no flow resistance in the
porous sleeve for Da = 100, the presence of a porous sleeve
can promote (k1/k2 > 1.0) or demote (k1/k2 < 1.0) the heat
flow. For low Rayleigh numbers, heat conduction is the
dominant heat transfer mechanism. The Darcy number,
although dictates the flow structure, has very little effect
on the temperature field. The dependence of the tempera-
ture field on the Darcy number is expected to become
important for highly convective flows that occur at high
Rayleigh numbers.

The combined effects of porous sleeve thickness and
conductivity ratio on the heat transfer results can be exam-
ined from Fig. 7, where average Nusselt numbers on the
inner and outer cylinders are presented. It is observed that
the average Nusselt number for the inner cylinder is always
twice as large as that of the outer cylinders. However, if one
takes into account the difference in the surface area, the
average Nusselt numbers turn out to be the same because
the radius of the outer cylinder is two times of that of
the inner cylinder. This shows that energy is balanced
between the inner and outer cylinders.

Also observed is that the average Nusselt numbers
decreases monotonously with k1/k2. As one recalls from
Fig. 3, an increase in the thermal conductivity ratio k1/k2

demotes convection in the fluid layer and thus reduces
the overall heat transfer from the annulus. On the other
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hand, it is observed that the average Nusselt number
increases with an increasing value of b. In other words,
the thinner the porous sleeve, the better the heat transfer
result. As one may recall from Fig. 2, a thinner porous
sleeve allows a stronger convective flow to be developed
in the fluid layer and which leads to an increase in the over-
all heat transfer. It is interesting to note that the average
Nusselt numbers for b = 1.25 and 1.5 become identical at
k1/k2 = 0.5. Based on this observation, one may expect that
for a smaller thermal conductivity ratio k1/k2, the average
Nusselt numbers for all three values of b would be the same.
5. Conclusions

A theoretical study was performed using the regular per-
turbation method and finite Fourier transform. The results
show that two convective cells are induced by the differen-
tial heating between the inner and outer cylinders. The
strength of these cells increases with the Rayleigh number.
Also found is that the Prandtl number has an insignificant
effect on the flow and temperature fields when the Rayleigh
number is small.

The thinner a porous sleeve, the greater the strength of a
convective cell. For a sufficiently thin porous sleeve, the
porous sleeve behaves as if it were impermeable. At low
Rayleigh numbers, the heat removal from the inner cylin-
der is mainly by conduction. However, at a higher Rayleigh
number when heat convection becomes more important, it
is expected that the porous sleeve thickness will play a
much more important role in heat transfer. As the pore size
in the porous sleeve decreases (i.e., the Darcy number
decreases), the flow strength weakens. If the Darcy number
is of the order of unity, the presence of the porous sleeve is
negligible because its pore size is of the same order of mag-
nitude as the gap width. Since conduction is the dominant
heat transfer mode for the present study, thermal conduc-
tivity ratio k1/k2 does not significantly affect the flow field.
Instead, it has a profound effect on the temperature distri-
bution. For a given porous sleeve thickness, the tempera-
ture gradient in the fluid layer decreases with k1/k2 but it
increases in the porous sleeve. Consequently, for a typical
porous bearing (Da < 10�4), an increase in the thermal con-
ductivity ratio weakens the convective cells. Also, the
effects of thermal conductivity ratio on the temperature
gradients lead to a reduction of the average Nusselt num-
bers with k1/k2. Other than the thermal conductivity ratio,
a thinner porous sleeve will also lead to a larger average
Nusselt number.

While the present study has explored a fundamental
problem in heat transfer, the analytical results obtained
are not only useful for code validation, but also have impor-
tant implications for practical applications. For example,
the Darcy number associated with porous bearings is nor-
mally on the order of 10�8 to 10�9 and the thermal conduc-
tivity ratio is usually on the order of 10�3. Based on the
present results, one would expect a larger temperature gra-
dient to occur in the fluid layer rather than the porous
sleeve. In addition, heat dissipation by pure conduction
through porous sleeve may be effective in operation.

Appendix A

A11 ¼ �B11 þ I1ðcÞA21 þ K1ðcÞB21 þ C21; ðA1Þ
A12 ¼ �ð13=216ÞX 1 þ X 2=18� X 3=12

þ 0:25X 8 � B22 þ I2ðcÞA22 þ K2ðcÞB22; ðA2Þ
A21 ¼ ½�aC1ð2bB21 þ bB11cB21Þ þ bC1ðaB11cB21 þ 2aB21Þ

þ cC1ðaB21bB11 � aB11bB21Þ�=d1; ðA3Þ
A22 ¼ ½�ak3ð4bB22 þ bB12cB22Þ þ bk3ðaB12cB22 þ 4aB22Þ

þ ck3ðaB22bB12 � aB12bB22Þ�=d3; ðA4Þ

B11 ¼ ½aC1ðbA21cB21 � bB21cA21Þ þ bC1ðaB21cA21 � aA21cB21Þ
þ cC1ðaA21bB21 � aB21bA21Þ�=d1; ðA5Þ
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B12 ¼ ½ak3ðbA22cB22 � bB22cA22Þ þ bk3ðaB22cA22 � aA22cB22Þ
þ ck3ðaA22bB22 � aB22bA22Þ�=d3; ðA6Þ

B21 ¼ ½aC1ðbB11cA21 � 2bA21Þ � bC1ð2aA21 � aB11cA21Þ
þ cC1ðaB11bA21 � aA21bB11Þ�=d1; ðA7Þ

B22 ¼ ½ak3ðbB12cA22 þ 4bA22Þ � bk3ð4aA22 þ aB12cA22Þ
þ ck3ðaB12bA22 � aA22bB12Þ�=d3; ðA8Þ

C11 ¼ �0:25ða=bÞ2A11;1 � ½0:5 lnða=bÞ þ 0:25�B11;1

� ða=bÞ2ð0:25 lnða=bÞ � 0:125ÞC11; ðA9Þ
C12 ¼ 0:125½�ða=bÞ2A12 þ ðb=aÞ2ðB12 � 4k1 � 2ða=bÞk2Þ�;

ðA10Þ
C21 ¼ �0:5c�1I0ðcc=bÞA21 þ 0:5c�1K0ðcc=bÞB21

� ð0:5 lnðc=bÞ þ 0:25ÞC21; ðA11Þ
C22 ¼ kACA22 þ kBCB22 þ kCC; ðA12Þ

D11 ¼ 0:125ða=bÞ4A11 þ 0:25ða=bÞ2B11

þ ða=bÞ4ð0:125 lnða=bÞ � 0:03125ÞC11; ðA13Þ
D12 ¼ ða=bÞ6=24A12 þ 0:5ða=bÞ2

� ð0:25B12 � k1 þ 0:5ða=bÞk2Þ; ðA14Þ
D21 ¼ ½0:5ðc=bÞ2c�1I0ðcc=bÞ � ðc=bÞc�2I1ðcc=bÞ�A21

� ½0:5ðc=bÞ2c�1K0ðcc=bÞ þ ðc=bÞc�2K1ðcc=bÞ�B21

þ 0:25ðc=bÞ2C21; ðA15Þ
D22 ¼ kADA22 þ kBDB22 þ kCD; ðA16Þ

E11 ¼�F 11 þ ðk1=k2Þ2ðE21 þ F 21Þ � ð1=64ÞA011þ ð3=128ÞC011;

ðA17Þ
E21 ¼ f�2aC2ðb=cÞ þ bC2½ððk1=k2Þ2 � 1Þða=bÞ

þ ððk1=k2Þ2 þ 1Þðb=aÞ� þ cC2ða2 � b2Þ=acg=d2; ðA18Þ

F 11 ¼ faC2½ðc=bÞððk1=k2Þ2 þ 1Þ � ððk1=k2Þ2 � 1Þ=ðc=bÞ�
� 2bC2ðk1=k2Þ2ða=bÞ � cC2ðk1=k2Þ2ða=cÞ
� ½ðc=bÞ2 � 1�g=d2; ðA19Þ

F 21 ¼ f2aC2ðc=bÞbC2½ððk1=k2Þ2 þ 1Þða=bÞ
þ ððk1=k2Þ2 � 1Þðb=aÞ� � cC2½ða=bÞ2 � 1�ðc=aÞg=d2;

ðA20Þ

GðnÞ ¼K2ðcnÞ
Z n

1

f�ZðfÞI2ðcfÞdf� I2ðcnÞ
Z n

1

f�ZðfÞK2ðcfÞdf;

ðA21Þ

W ðRÞ ¼ A22�
Z R

1

nZðnÞK2ðcnÞdn

� �
I2ðcRÞ

þ B22þ
Z R

1

nZðnÞI2ðcnÞdn

� �
K2ðcRÞ; ðA22Þ

X 1 ¼ 0:25C11C
0
11=Pr; ðA23Þ

X 2 ¼ ð0:25ðA11C
0
11 þ A011C11Þ � 0:1875C11C

0
11Þ=Pr

� qð3 sin hC011 � cos hC11Þ=64; ðA24Þ
X 3 ¼ 0:25A11A011 þ 0:09375 A11C

0
11�3A011C11 þ C11C

0
11

�� �� 	
Pr

þ q sin h �6A011 þ 16B011 þ 7C011

� �
=128

�
þ cos hð2A11 � 3C11Þ=128�; ðA25Þ
X 4 ¼ 0:5ðB11C
0
11 � B011C11Þ=Pr � 0:125qðsin hB011 � cos hB11Þ;

ðA26Þ
X 5 ¼ 0:5 �A11B011 þ A011B11

� �
þ 0:125 5B11C

0
11 � B011C11

� ��
þC11C

0
11 � C011C11

�	
Pr � q½sin hð0:125B011 þ 0:5C011Þ

þ cos hð0:125B11 � 0:5C11Þ�; ðA27Þ
X 6 ¼ ½ð3A11B011 þ 5A011B11Þ=8� A11C011 þ A011C11

� ð3B11C
0
11 þ 5B011C11Þ=32� C011C11�=Pr

� q½sin hð0:5C011 þ E11Þ þ cos hE011�; ðA28Þ
X 7 ¼ ðB11B011 � D11C

0
11 � D011C11Þ=Pr

� 0:5qðsin hD011 þ cos hD11Þ; ðA29Þ
X 8 ¼ �A11D011 � A011D11 þ 0:5B11B011

�
þB11C011 þ B011C11 � D011C11

�
=Pr

þ q sin h 0:5D011 þ F 11

� �
� cos hF 011

� �
; ðA30Þ

X 9 ¼ ðB11D011 � B011D11Þ=Pr; ðA31Þ

Y 1 ¼ qðk1=k2Þc�3ð� sin hA021 þ cos hA21Þ; ðA32Þ
Y 2 ¼ qðk1=k2Þc�3ðsin hB021 � cos hB21Þ; ðA33Þ
Y 3 ¼ 0:125qðk1=k2Þð� sin hC021 þ cos hC21Þ; ðA34Þ
Y 4 ¼ �0:5cA21C

0
21; ðA35Þ

Y 5 ¼ �0:5cB21C
0
21; ðA36Þ

Y 6 ¼ �qðk1=k2Þ½sin hð0:5C021 þ 0:125C021Þ
þ cos hð�0:5C21 þ 0:125C21Þ�; ðA37Þ

Y 7 ¼ �cA21C021; ðA38Þ
Y 8 ¼ cB21C021; ðA39Þ
Y 9 ¼ �qðk1=k2Þ½sin hð0:5C021 þ E21 � 0:125C021Þ þ cos hE021�;

ðA40Þ
Y 10 ¼ 0:5ðA21C

0
21 þ A021C21Þ; ðA41Þ

Y 11 ¼ 0:5ðB21C
0
21 þ B021C21Þ; ðA42Þ

Y 12 ¼ A21C021 þ A021ðC21 þ 0:5C21Þ; ðA43Þ
Y 13 ¼ B21C021 þ B021ðC21 þ 0:5C21Þ; ðA44Þ
Y 14 ¼ C21C

0
21 � 0:5qðk1=k2Þðsin hD021 þ cos hD21Þ; ðA45Þ

Y 15 ¼ A21ð�cD021 þ c�1C021Þ � qðk1=k2Þc�3 sinðhÞA021; ðA46Þ
Y 16 ¼ B21ðcD021 � c�1C021Þ þ qðk1=k2Þc�3 sinðhÞB021; ðA47Þ
Y 17 ¼ qðk1=k2Þ½sin hð0:5D021 þ F 21Þ � cos hF 021�; ðA48Þ
Y 18 ¼ A21ðD021 � c�2C021Þ � A021ðD21 � c�2C21Þ; ðA49Þ
Y 19 ¼ B21ðD021 � c�2C021Þ � B021ðD21 � c�2C21Þ; ðA50Þ
Y 20 ¼ �D21C

0
21 þ D021C21; ðA51Þ

ZðRÞ ¼ Y 1

Z R

1

n�3I0ðcnÞdnþ Y 2

Z R

1

n�3K0ðcnÞdnþ Y 3 lnðRÞ2

þ Y 4I0ðcRÞ þ Y 5K0ðcRÞ þ Y 6½ � lnðRÞ þ Y 7I0ðcRÞ
þ Y 8K0ðcRÞ þ Y 9 þ Y 10I1ðcRÞ þ Y 11K1ðcRÞ½ � lnðRÞf
þY 12I1ðcRÞ þ Y 13K1ðcRÞgR�1

þfY 14 lnðRÞ þ Y 15I0ðcRÞ þ Y 16K0ðcRÞ
þ Y 17gR�2þfY 18I1ðcRÞ þ Y 19K1ðcRÞgR�3 þ Y 20R�4;

ðA52Þ
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C11 ¼ �0:5q sin h; ðA53Þ
C21 ¼ ðk1=k2Þqc�2 sin h; ðA54Þ

aA21 ¼�c�1I0ðcÞþ ½c�2þ 0:375� 0:25ða=bÞ2

� 0:125ða=bÞ4�I1ðcÞþ 0:5c�1½1þðc=bÞ2�I0ðcc=bÞ
� ðc=bÞc�2I1ðcc=bÞ; ðA55Þ

aA22 ¼ ½ða=bÞ6=24� 0:125ða=bÞ2þ 1=12�I2ðcÞ� kAC � kAD;

ðA56Þ
aB11 ¼�0:5 lnða=bÞþ 0:125½ða=bÞ4� 1�; ðA57Þ
aB12 ¼�ða=bÞ6=24þ 0:25ða=bÞ2� 1=3þ 0:125ðb=aÞ2; ðA58Þ
aB21 ¼ c�1K0ðcÞþ ½c�2þ 0:375� 0:25ða=bÞ2

� 0:125ða=bÞ4�K1ðcÞ� 0:5c�1½1þðc=bÞ2�K0ðcc=bÞ
� ðc=bÞc�2K1ðcc=bÞ; ðA59Þ

aB22 ¼ ½ða=bÞ6=24� 0:125ða=bÞ2þ 1=12� �K2ðcÞ� kBC � kBD;

ðA60Þ

ak3 ¼ ½�ð13=5184Þða=bÞ6 þ ð13=1728Þða=bÞ2

� ð419=331776Þ�X 1 þ ðða=bÞ6=432

� ða=bÞ2=144þ ð53=27648ÞÞX 2

þ ð�ða=bÞ6=288þ ða=bÞ2=96� ð5=1152ÞÞX 3

� ð137=10368ÞX 4 þ ð19=1728ÞX 5 � X 6=72

þ ðða=bÞ6=96� ða=bÞ2=32þ 5=48ÞX 8

� 0:5ðða=bÞ2 þ ðb=aÞ2Þk1 þ 0:25ðða=bÞ3 � ðb=aÞÞk2

� kCC � kCD; ðA61Þ
aC1 ¼ f0:125ða=bÞ4½� lnða=bÞ þ 0:25� þ 0:25ða=bÞ2

� ½� lnða=bÞ0:5� � 0:15625gC11

þ ½0:125� 0:125ða=bÞ4 þ 0:5 lnðc=bÞ
þ 0:25ðc=bÞ2�C21; ðA62Þ

aC2 ¼ ½ða=bÞ3 � ða=bÞ�=64A011 þ 0:125ða=bÞ
� ½lnða=bÞ2 � lnða=bÞ�B011 þ 0:5ða=bÞ lnða=bÞC011

� 0:25ða=bÞ2 � 0:5ðb=aÞ lnða=bÞD011

þ ½ð3=128Þða=bÞ þ ða=bÞ3=64ðlnða=bÞ � 1:5Þ�C011;

ðA63Þ

bA21 ¼ ½0:125� 0:25ða=bÞ2 þ 0:125ða=bÞ4 � c�2�I1ðcÞ
þ 0:5½1� ðc=bÞ2�c�1I0ðcc=bÞ þ ðc=bÞc�2I1ðcc=bÞ;

ðA64Þ
bA22 ¼ ½�ða=bÞ6=12� 0:25ða=bÞ2 þ ð1=3Þ�I2ðcÞ

� 2kAC þ 2kAD; ðA65Þ
bB11 ¼ �0:5 lnða=bÞ � 0:375þ 0:5ða=bÞ2 � 0:125ða=bÞ4;

ðA66Þ
bB12 ¼ ða=bÞ6=12� ð1=3Þ þ 0:25ðb=aÞ2; ðA67Þ
bB21 ¼ ½0:125� 0:25ða=bÞ2 þ 0:125ða=bÞ4 � c�2�K1ðcÞ

� 0:5½1� ðc=bÞ2�c�1K0ðcc=bÞ þ ðc=bÞc�2K1ðcc=bÞ;
ðA68Þ

bB22 ¼ ½�ða=bÞ6=12� .25ða=bÞ2 þ ð1=3Þ�K2ðcÞ
� 2kBC þ 2kBD; ðA69Þ
bk3 ¼ ½�ð13=2592Þða=bÞ6 þ ð13=864Þða=bÞ2

� ð419=165888Þ�X 1 þ ð�ða=bÞ6=216

� ða=bÞ2=72þ ð67=13824ÞÞX 2

þ ðða=bÞ6=144þ ða=bÞ2=48� ð7=576ÞÞX 3

� ð293=10368ÞX 4 þ ð43=1728ÞX 5

� ð5=144ÞX 6 þ ð�ða=bÞ6=48� ða=bÞ2=16

þ ð1=48ÞÞX 8 þ X 9=16þ ðða=bÞ2

� ðb=aÞ2Þk1 � 0:5ðða=bÞ3 þ ðb=aÞÞk2

� 2kCC þ 2kCD; ðA70Þ

bC1 ¼ f0:125ða=bÞ4½lnða=bÞ � 0:25� � 0:25ða=bÞ2½lnða=bÞ � 0:5�

� 0:09375gC11 þ ½0:375� 0:25ða=bÞ2 þ 0:125ða=bÞ4

þ 0:5 lnðc=bÞ � 0:25ðc=bÞ2�C21; ðA71Þ

bC2 ¼ c�3ðc=bÞ A021

Z c=b

1

n�3I0ðcnÞdn� B021

Z c=b

1

n�3K0ðcnÞdn


 �
þ 0:5ðc=bÞ lnðc=bÞC021 � 0:5ðb=cÞ lnðc=bÞD021

þ 0:125ðc=bÞ½lnðc=bÞ2 � lnðc=bÞ�C021; ðA72Þ

cA21 ¼ I1ðcÞ � 0:5½1þ ðc=bÞ2�cI0ðcc=bÞ þ ðc=bÞI1ðcc=bÞ;
ðA73Þ

cA22 ¼ 4I2ðcÞ � cI1ðcÞ þ 2c2kAC � 2c2kAD; ðA74Þ

cB21 ¼ K1ðcÞ þ 0:5½1þ ðc=bÞ2�cK0ðcc=bÞ þ ðc=bÞK1ðcc=bÞ;
ðA75Þ

cB22 ¼ 4K2ðcÞ þ cK1ðcÞ þ 2c2kBC � 2c2kBD; ðA76Þ

ck3 ¼ X 1=108� X 2=36þ X 3=6þ X 4=32� X 5=16

þ 0:25ðX 6 � X 7 þ 2X 8 � X 9Þ þ 2c2kCC � 2c2kCD;

ðA77Þ

cC1 ¼ C11 þ ð�0:5 lnðc=bÞc2 þ 2þ 0:25½1� ðc=bÞ2�c2ÞC21;

ðA78Þ
cC2 ¼ 0:03125A011 � 0:125B011 þ 0:5C011 � 0:5D011

� 0:03125C011 � c�3I0ðcÞA021 þ c�3K0ðcÞB021

� 0:5C021 þ 0:5D021 þ 0:125C021; ðA79Þ

d1 ¼ aB11ðbB21cA21 � bA21cB21Þ þ aA21ðbB11cB21 þ 2bB21Þ
� AB21ð2bA21 þ bB11cA21Þ; ðA80Þ

d2 ¼ ½ð1� ðk1=k2Þ2Þðc=bÞ þ ð1þ ðk1=k2Þ2Þðb=cÞ�ða=bÞ

� ½ð1þ ðk1=k2Þ2Þðc=bÞ þ ð1� ðk1=k2Þ2Þðb=cÞ�ðb=aÞ;
ðA81Þ

d3 ¼ aB12ðbB22cA22 � bA22cB22Þ þ aA22ðbB12cB22 þ 4bB22Þ
� aB22ð4bA22 þ bB12cA22Þ; ðA82Þ
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k1 ¼ ½X 1=384 lnða=bÞ2 þ ð�ð25=4608ÞX 1 þ X 2=384Þ lnða=bÞ
þ ð415=110592ÞX 1 � ð25=9216ÞX 2 þ X 3=384�ða=bÞ6

þ ½ðX 4=144Þ lnða=bÞ3 þ ð�ð11=576ÞX 4 þ X 5=96Þ
� lnða=bÞ2 þ ðð85=3456ÞX 4 � ð11=576ÞX 5 þ X 6=48Þ
� lnða=bÞ � ð137=10368ÞX 4 þ ð19=1728ÞX 5

� X 6=72�ða=bÞ4 þ ½�ðX 7=32Þ lnða=bÞ2 þ ððX 7=64Þ
� ðX 8=16ÞÞ lnða=bÞ�ða=bÞ2 þ ðX 9=16Þ lnða=bÞ; ðA83Þ

k2 ¼ ½ðX 1=64Þ lnða=bÞ2 þ ð�ð7=265ÞX 1 þ X 2=64Þ lnða=bÞ
þ ð35=2048ÞX 1 � ð7=512ÞX 2 þ X 3=64�ða=bÞ5

þ ð1� ðk1=k2Þ2Þðb=cÞ�ðb=aÞ þ ½X 4=36 lnða=bÞ3

þ ð�X 4=18þ X 5=24Þ lnða=bÞ2 þ ðð13=216ÞX 4

� X 5=18þ X 6=12Þ lnða=bÞ � ð293=10368ÞX 4

þ ð43=1728ÞX 5 � ð5=144ÞX 6�ða=bÞ3

þ f�ðX 7=16Þ lnða=bÞ2 � ðX 7=32þ X 8=8Þ lnða=bÞ
þ X 7=64� X 8=16gða=bÞ þ ðX 9=16Þðb=aÞ; ðA84Þ

kAC ¼ �0:25

Z c=b

1

n�1I2ðcnÞdn; ðA85Þ

kBC ¼ �0:25

Z c=b

1

n�1K2ðcnÞdn; ðA86Þ

kCC ¼ �0:25

Z c=b

1

n�1GðnÞdn; ðA87Þ

kAD ¼ 0:25

Z c=b

1

n3I2ðcnÞdn; ðA88Þ

kBD ¼ 0:25

Z c=b

1

n3K2ðcnÞdn; ðA89Þ

kCD ¼ �0:25

Z c=b

1

n3GðnÞdn; ðA90Þ

q ¼ ½ðk1=k2Þ lnðc=bÞ � lnða=bÞ��1
; ðA91Þ

c ¼ 1=
ffiffiffiffiffiffi
Da
p

. ðA92Þ
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